Spanish experience in the Go-Lab Project
Abstract
Go-Lab is a project funded by the European Union FP7 programme to promote STEM education in pre-university students. The project includes about 20 members from more than 15 different countries and is constructed around three central ideas: pedagogy, technology and deployment in schools. Pedagogically, the project is rooted in inquiry-based learning (IBL), which is developed using virtual or remote online laboratories to maximize the effect on secondary education teachers and students. This paper describes these three facets, putting special emphasis on the deployment process and the results achieved in Spain. The Spanish contribution has been the most relevant to the development of the Go-Lab ecosystem in schools, since it accounts for nearly 25% of the total number of teachers who develop and implement Go-Lab in their schools and involves a total of 281 schools in the country. It has been observed that the Go-Lab ecosystem apps provide students the necessary experience to be protagonists of their learning through a creative and research role that promotes the youth approach to STEM disciplines.Keywords
remote and virtual labs, Go-Lab, STEM, inquiry-based learning, experimentationReferences
BALAMURALITHARA, B. y WOODS, P.C. (2009). Virtual laboratories in engineering education: The simulation lab and remote lab. Computer Applications in Engineering Education, 17(1), 108-118. https://doi.org/10.1002/cae.20186
BELL, R.L. y TRUNDLE, K.C. (2008). The use of a computer simulation to promote scientific conceptions of moon phases. Journal of Research in Science Teaching, 45, 346-372. https://doi.org/10.1002/tea.20227
BYBEE, R. (ed.) (2002). Learning science and the science of learning. Arlington, VA: NSTA Press.
CHAMBERS, R.; CHUEN YEE LO, B. y ALLEN, N.B. (2008). The Impact of Intensive Mindfulness Training on Attentional Control, Cognitive Style, and Affect. Cognitive Therapy and Research, 32, 303-322. https://doi.org/10.1007/s10608-007-9119-0
CORTER, J.E.; ESCHE, S.K.; CHASSAPIS, C.; MA, J. y NICKERSON, J.V. (2011). Process and learning outcomes from remotely-operated, simulated, and hands-on student laboratories. Computers & Education, 57(3), 2054-2067.
DE JONG, T. (2006). Technological advances in inquiry learning. Science, 312(5773), 532-533.
DE JONG, T.; LINN, M.C. y ZACHARIA, Z.C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340(6130), 305-308.
DZIABENKO, O. y BUDNYK, O. (2019). Go-Lab ecosystem: Using online laboratories in a primary school, EDULEARN19 Proceedings. EDULEARN19 (11th annual International Conference on Education and New Learning Technologies). Palma de Mallorca.
EACEA P9 Eurydice (2011). Science education in Europe: National policies, practices and research. Bruselas: Education, Audiovisual and Culture Executive Agency (EACEA) P9 Eurydice. Recuperado de https://op.europa.eu/en/publication-detail/-/publication/bae53054-c26c-4c9f-8366-5f95e2187634
EIZAGIRRE SAGARDIA, A.I.; ALTUNA URDIN, J. y FERNÁNDEZ FERNÁNDEZ, I.B. (2018). Los entornos activo-colaborativos de aprendizaje como buenas prácticas en el desarrollo de competencias transversales en la formación profesional de la Comunidad Autónoma del País Vasco. Educar, 54(2), 331-349. https://doi.org/10.5565/rev/educar.880
FEISEL, L.D. y ROSA, A.J. (2005). The Role of the Laboratory in Undergraduate Engineering Education. Journal of Engineering Education, 94(1), 121-130. https://doi.org/10.1002/j.2168-9830.2005.tb00833.x
FINKELSTEIN, N.D.; ADAMS, W.K.; KELLER, C.J.; KOHL, P.B.; PERKINS, K.K.; PODOLEFSKY, N.S.; REID, S. y LEMASTER, R. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physical Review Special Topics: Physics Education Research, 1(1), 010103-1.
HOFSTEIN, A. y LUNETTA, V.N. (2004). The laboratory in science education: Foundations for the twenty-first century. Science Education, 88(1), 28-54. https://doi.org/10.1002/sce.10106
HUPPERT, A.; BLASIUS, B. y STONE, L. (2002). A model of phytoplankton blooms. American Naturalist, 159, 156-171.
MA, J. y NICKERSON, J.V. (2006). Hands-On, Simulated, and Remote Laboratories: A Comparative Literature Review. ACM Computing Surveys, 38(3), 1-24.
MINNER, D.D.; LEVY, A.J. y CENTURY, J. (2010). Inquiry-based science instruction—what is it and does it matter?: Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474-496. https://doi.org/10.1002/tea.20347
NATIONAL COALITION FOR LITERACY (2010, November 12). National Education Technology Plan 2010: Transforming American Education: Learning Powered by Technology. Recuperado de https://library.educause.edu/resources/2010/11/national-education-technology-plan-2010-transforming-american-education-learning-powered-by-technology
ORDUÑA, P. et al. (2018). The WebLab-Deusto Remote Laboratory Management System Architecture: Achieving Scalability, Interoperability, and Federation of Remote Experimentation. En M. AUER; A. AZAD; A. EDWARDS y T. DE JONG (eds.). Cyber-Physical Laboratories in Engineering and Science Education (pp. 17-42). Cham: Springer.
PAAVOLA, S. y HAKKARAINEN, K. (2018). Community of inquiry and inquiry-based learning. Encyclopedia of Educational Philosophy and Theory. Singapur: Springer.
PEDASTE, M.; MÄEOTS, M.; SIIMAN, L.A.; DE JONG, T.; VAN RIESEN, S.A.; KAMP, E.T. y TSOURLIDAKI, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47-61.
ROCARD, M.; CSERMELY, P.; JORDE, D.; LENZEN, D.; WALBERG-HENRIKSON, H. y HEMMO, V. (2007). Science education now: A renewed pedagogy for the future of Europe. Bruselas: European Commission. Directorate-General for Research. Recuperado de http://ec.europa.eu/research/science-society/document_library/pdf_06/report-rocard-on-science-education_en.pdf
ZACHARIA, Z.C. y OLYMPIOU, G. (2011). Physical versus virtual manipulative experimentation in physics learning. Learning and Instruction, 21(3), 317-331.
Published
Downloads
Copyright (c) 2020 Iratxe Menchaca Sierra, Olga Dziabenko, Javier García Zubía
This work is licensed under a Creative Commons Attribution 4.0 International License.